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Lecture 17: October 30

Proof of the technical result. We are in the process of proving the one-dimensional
version of the Cattani-Deligne-Kaplan theorem about the locus of Hodge classes.
We first need to finish up the proof of the following technical result.

Proposition. Suppose that zn ∈ H̃ is a sequence of points with bounded imaginary
parts, such that tn = ezn → 0. Also suppose that vn ∈ VZ is a sequence of integral
classes with h(vn, vn) ≤ K, such that vn ∈ F 0

Φ(zn) for every n ∈ N. Then after

passing to a subsequence, vn is constant, and the constant value belongs to F 0
Ψ(0) ∩

kerR.

We already proved that, after passing to a subsequence, the E0(H)-component
of vn is constant, and Rvn = 0. It remains to show that the sequence vn ∈ VZ
can only take finitely many values; or, what amounts to the same thing, that a
subsequence is constant.

Step 4. We prove that the sequence vn can take only finitely many values, and that
every constant subsequence lies in F 0

Ψ(0). The idea is to bound the Hodge norm of

vn with respect to a fixed Hodge structure on V . Recall that the two holomorphic
mappings Φ: H̃→ D and Ψ: ∆→ Ď are related by the formula Ψ(ez) = e−zRΦ(z).
Since Rvn = 0, we have

vn = e−znRvn ∈ e−znRF 0
Φ(zn) = F 0

Ψ(tn).

Since Ψ is holomorphic, the subspaces on the righ-hand side converge to F 0
Ψ(0) at

a rate of |tn|. We can therefore decompose

vn = v′n + v′′n

with v′n ∈ F 0
Ψ(0) and v′′n of size bounded by a constant multiple of |tn|. Recall

from the exercises in Lecture 13 that we can find z ∈ H̃ with Re z � 0, such that
ezRΨ(0) ∈ D. The above decomposition for vn gives

vn = ezRv′n + ezRv′′n;

here ezRv′n ∈ ezRF 0
Ψ(0), and the Hodge norm of ezRv′′n in the Hodge structure

ezRΨ(0) is bounded by a constant multiple of |tn|. By looking at the Hodge de-
composition of vn ∈ VZ in the Hodge structure ezRΨ(0), and using the fact that
h(vn, vn) ≤ K, one deduces from this relation that

‖vn‖2ezRΨ(0) ≤ K + 4C|tn|2.
In particular, the Hodge norm of vn is bounded, and since vn ∈ VZ, it follows
that the sequence vn can take only finitely many distinct values. Moreover, since
vn ∈ F 0

Ψ(tn), any value that appears infinitely many times must belong to

lim
n→∞

F 0
Ψ(tn) = F 0

Ψ(0).

This completes the proof of the technical result.

The locus of Hodge classes is algebraic. The technical result in Proposi-
tion 16.5 is all that we need to prove that the locus of Hodge classes HdgK(V ) is
algebraic. Last time, we reduced the problem to the case of a polarized variation of
Z-Hodge structure V on a quasi-projective curve, with unipotent local monodromy
around each point of X̄ \X. We also said that, by Chow’s theorem, it is enough to
construct an extension of HdgK(V ) that is finite and proper over X̄.
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Let us first do this in the local setting where X = ∆∗ and X̄ = ∆. Recall that
the étalé space of the local system VZ is the image of the holomorphic mapping

(17.1) H̃× VZ → ∆∗ × V, (z, v) 7→
(
ez, e−zRv

)
.

Here Ṽ ∼= ∆×V is the trivialization of the canonical extension, and V ∼= ∆∗×V the
induced trivialization of V . The locus of Hodge classes Hdg(V ) is the intersection

of Ét(VZ) with the subbundle F 0V. In our trivialization, the fiber of the Hodge
bundle F 0V at a point t ∈ ∆∗ is exactly the subspace F 0

Ψ(t). Since we know from

Theorem 9.1 that Ψ: δ → Ď is holomorphic, we actually have a subbundle F 0Ṽ,
whose fiber over the origin in F 0

Ψ(0).

Now Proposition 16.5 suggests how to construct an extension of HdgK(V ) to an
object over ∆. First, it is easy to see that the irreducible components of the image
of (17.1) are of two kinds: (1) If v ∈ VZ satisfies Rv = 0, then the corresponding
component of the image is a copy of ∆∗, consisting of all points (t, v) with t ∈ ∆∗.
The closure of such a component also contains the point (0, v). (2) If v ∈ VZ satisfies
Rv 6= 0, then the corresponding component of the image is closed (and isomorphic

to H̃). The closure of Ét(VZ) inside Ṽ ∼= ∆ × V is therefore still a closed analytic

subset. If we intersect it with the subbundle F 0Ṽ, we get another closed analytic
subset, which agrees with the locus of Hodge classes over ∆∗. The points that get
added are of the form (0, v), where v ∈ VZ satisfies Rv = 0 and v ∈ F 0

Ψ(0). You

will notice that these are exactly the sort of points that can appear as limits of a
sequence of Hodge classes in Proposition 16.5.

We can globalize this construction as follows. The closure of Ét(VZ) inside the

vector bundle Ṽ is an analytic subset, and the intersectionfiHdg(V ) = Ét(VZ) ∩ F 0Ṽ ⊆ Ṽ

is therefore a closed analytic subset that extends Hdg(V ). Moreover,fiHdgK(V ) = ÉtK(VZ) ∩ F 0Ṽ ⊆ Ṽ

is a union of connected components, corresponding to classes whose self-intersection
number is bounded by K, and extends HdgK(V ). Both of these live over X̄.

Proposition 17.2. The projection fiHdgK(V )→ X̄ is proper with finite fibers.

Proof. I will only prove properness. This is a local problem, and so it suffices
to consider the case where X = ∆∗ and X̄ = ∆. Take a sequence of points
(tn, vn) ∈ Ét(VZ) with tn → 0. Properness is the statement that a subsequence

converges to a limit in fiHdgK(V ). But Proposition 16.5 says that, after passing
to a subsequence, vn = v is constant and belongs to kerR ∩ F 0

Ψ(0). Therefore

(tn, vn)→ (0, v), which belongs to fiHdgK(V ) by construction. �

Since X̄ is projective, Chow’s theorem implies that fiHdgK(V ) is also projective;
it follows that HdgK(V ) is a quasi-projective algebraic variety.

Note. Not every point in fiHdgK(V ) is the limit of a sequence of Hodge classes. A
typical example are vanishing cycles, for example in a one-parameter degeneration
of a family of smooth hypersurfaces in P3 to a surface with an ordinary double
point. Each vanishing cycle in a 2-sphere, whose class is generally not a Hodge
class, but which becomes a Hodge class “in the limit”. This suggest calling the

points in fiHdgK(V ) “limit Hodge classes”. So what Cattani, Deligne, and Kaplan
really prove is that the locus of limit Hodge classses is a projective algebraic variety.
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Schmid’s results and Hodge modules. This seems like a good time to start
introducing Hodge modules, in the case of the disk. The general idea is that from
a polarized variation of Hodge structure on the punctured disk ∆∗, we would like
to construct a “Hodge module” on the disk ∆ that extends the variation of Hodge
structure in a suitable sense. (More generally, given a polarized variation of Hodge
structure on a smooth quasi-projective curve X, we would like to have a Hodge
module on a projective compactification X̄, because it is generally better to work
over projective varieties.) Unless the variation of Hodge structure happens to ex-
tend to ∆, this object is going to have some kind of singularity at the origin.
Schmid’s results are going to suggest how this should look like.

Let me start with a brief summary. Our variation of Hodge structure consists of
a vector bundle V with a connection ∇ : V → Ω1

∆∗⊗O∆∗ V , a flat hermitian pairing

hV : V ⊗C V → C∞∆∗ , and a family of subbundles F pV . We will see that the pair
(V ,∇) naturally extends to a D∆-moduleM, where D∆ is the sheaf of differential
operators on ∆. The polarization extends to a pairing hM : M ⊗C M → Db∆

with values in the sheaf of distributions on ∆. Lastly, the Hodge bundles extend
to a filtration F•M by coherent O∆-modules that is compatible with the action by
differential operators. In each of these three cases, the “singularity” of the variation
of Hodge structure requires working in a larger class of objects: D-modules instead
of vector bundles with connection, distributions instead of smooth functions, and
coherent sheaves instead of vector bundles.

Extending the vector bundle with connection. We now take up each of the
three elements, starting from the vector bundle V and the connection ∇. Recall
from Lecture 8 that we have a family of canonical extensions, which are holomorphic
vector bundles on ∆ that extend V . For α ∈ R, let Ṽ α be the canonical extension
for the interval [α, α + 1); recall that this means that the residue Res0(∇) of the
logarithmic connection

∇ : Ṽ α → Ω1
∆(log 0)⊗O∆

Ṽ α

has its eigenvalues in the interval [α, α + 1). Similarly, Ṽ >α means the canonical
extension for the interval (α, α+ 1]. Each canonical extension is a subsheaf of j∗V ,
where j : ∆∗ ↪→ ∆ is the open embedding.

The following discussion will be clearer if we briefly recall the construction of Ṽ α

from Lecture 8. Let V be the space of flat section of exp∗ V , where exp: H̃ → ∆∗

is the universal covering by the half space H̃ =
{
z ∈ C

∣∣ Re z < 0
}

. Write the
monodromy transformation T ∈ End(V ) in the form

T = e2πiR = e2πiRSe2πiRN ,

where RN is nilpotent, RS is semisimple with eigenvalues in the interval [α, α+ 1),
and the two operators commute. The space of flat sections gives us a trivialization
OH̃ ⊗C V ∼= exp∗ V , and for each v ∈ V , the holomorphic section

s̃v(z) =
(
ezRv

)
(z) =

∞∑

j=0

zj

j!
(Rjv)(z)

of the trivial bundle descends to a holomorphic section sv ∈ H0(∆∗,V ). We con-

structed Ṽ α by taking the trivial bundle O∆ ⊗C V , and mapping it into j∗V by
sending 1⊗ v to the section sv ∈ H0(∆, j∗V ).

The construction shows how the different Ṽ α are related. If we replace α by α+1
in the construction, then RS changes to RS +id, and s̃v and sv(t) get multiplied by
t = ez. Similarly, if we replace α by α− 1, then sv(t) gets multiplied by t−1 = e−z.
As subsheaves of j∗V , we therefore have Ṽ α+1 = tṼ α and Ṽ α−1 = t−1Ṽ α. In
particular, Ṽ α+1 ⊆ Ṽ α. More generally, we have the following lemma.
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Lemma 17.3. If α ≤ β, then Ṽ β ⊆ Ṽ α.

Proof. Let λ1, . . . , λr ∈ [α, α+1) be the distinct eigenvalues of RS . Since T = e2πiR

is independent of the choice of interval, the eigenvalues of the residue on Ṽ β must be
of the form λ1+a1, . . . , λk+ak ∈ [β, β+1) with nonnegative integers a1, . . . , ak ∈ N.
Given any v ∈ V , we decompose v = v1 + · · · + vr, where vj ∈ Eλj (RS). In the

construction of Ṽ α, the section corresponding to v ∈ V is then

sv(t) = sv1
(t) + · · ·+ svr (t).

In the construction of Ṽ β , the section corresponding to v ∈ V is

ta1sv1
(t) + · · ·+ tarsvr (t).

This is a linear combination of sections of Ṽ α, with holomorphic functions as coef-
ficients, and so Ṽ β ⊆ Ṽ α. �

Exercise 17.1. Show in a similar manner that Ṽ >α = Ṽ α+ε for ε > 0 sufficiently
small.

The canonical extensions depend on a choice of interval, but the sheaf

Ṽ =
⋃

α∈R
Ṽ α ⊆ j∗V

is independent of any choices. It is called Deligne’s canonical meromorphic exten-
sion of the pair (V ,∇). Clearly, Ṽ is a sheaf of O∆-modules that agrees with V

outside the origin; note that Ṽ is typically not coherent over O∆.

Example 17.4. If V = O∆∗ , with the trivial connection d : O∆∗ → Ω1
∆∗ , then

Ṽ 0 = O∆, and more generally Ṽ ` = t`O∆ for every ` ∈ Z. In this case, Ṽ is the
sheaf of holomorphic functions on ∆∗ with poles of arbitrary order at the origin;
this is clearly not coherent as an O∆-module.

The logarithmic connection on each Ṽ α gives Ṽ the structure of a left module
over D∆, the sheaf of linear differential operators of finite order. This is a very
concrete object in this case, and you don’t need to know anything about D-modules
to understand what is going on. We have D∆ = O∆〈∂t〉, where ∂t = ∂

∂t is the
derivative operator with respect to the variable t. Note that t and ∂t do not
commute; instead, they satisfy the relation

[∂t, t] = ∂t · t− t · ∂t = 1.

More generally, we have [∂t, f ] = ∂f
∂t for any f ∈ O∆. If s is any local section of

Ṽ α, we define the action by ∂t as

∂t · s = ∇∂ts ∈
1

t
Ṽ α = Ṽ α−1.

The Leibniz rule for the connection reads

∂t · (fs) = ∇∂t(fs) =
∂f

∂t
s+ f∇∂t(s) =

∂f

∂t
s+ f∂t · s,

and so left multiplication by ∂t is compatible with the relation [∂t, f ] = ∂f
∂t . This

means that Ṽ is indeed a left D∆-module. Let me emphasize again that

t · Ṽ α = Ṽ α+1 and ∂t · Ṽ α ⊆ Ṽ α−1,

all viewed as subsheaves of j∗V .

Lemma 17.5. As a left D∆-module, Ṽ is coherent.
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Proof. More precisely, we will show that Ṽ = D∆ · Ṽ −1. Since Ṽ −1 is a coherent
O∆-module – in fact, even locally free – it follows that Ṽ is a coherent D∆-module.
In view of how we defined Ṽ , it suffices to prove that Ṽ α = ∂t · Ṽ α+1 as long as
α ≤ −2. Consider the composition

Ṽ α Ṽ α+1 Ṽ α.t ∂t

Working in the trivialization O∆ ⊗C V ∼= Ṽ α where the connection takes the form
∇(1⊗ v) = dt

t ⊗Rv, we get

∂t(t⊗ v) = 1⊗ v + t · 1

t
⊗Rv = 1⊗ (R+ id)v.

Since the eigenvalues of R belong to the interval [α, α + 1), the operator R + id
is invertible as long as α ≤ −2. This shows that ∂tt is an isomorphism, and so
∂t : Ṽ α+1 → Ṽ α must be surjective. �
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